Statistical mechanics of unsupervised feature learning in a restricted Boltzmann machine with binary synapses
نویسنده
چکیده
Revealing hidden features in unlabeled data is called unsupervised feature learning, which plays an important role in pretraining a deep neural network. Here we provide a statistical mechanics analysis of the unsupervised learning in a restricted Boltzmann machine with binary synapses. A message passing equation to infer the hidden feature is derived, and furthermore, variants of this equation are analyzed. A statistical analysis by replica theory describes the thermodynamic properties of the model. Our analysis confirms an entropy crisis preceding the non-convergence of the message passing equation, suggesting a discontinuous phase transition as a key characteristic of the restricted Boltzmann machine. Continuous phase transition is also confirmed depending on the embedded feature strength in the data. The mean-field result under the replica symmetric assumption agrees with that obtained by running message passing algorithms on single instances of finite sizes. Interestingly, in an approximate Hopfield model, the entropy crisis is absent, and a continuous phase transition is observed instead. We also develop an iterative equation to infer the hyper-parameter (temperature) hidden in the data, which in physics corresponds to iteratively imposing Nishimori condition. Our study provides insights towards understanding the thermodynamic properties of the restricted Boltzmann machine learning, and moreover important theoretical basis to build simplified deep networks.
منابع مشابه
Sparse Convolutional Restricted Boltzmann Machine with Application to Trajectory Classification
Our goal is to learn useful features for helicopter flight data, and in particular to use these features to classify segments of the flight data according to which maneuver is most likely being performed. The feature-learning aspect of this task is challenging because it is not immediately apparent from observing the data what good features for helicopter trajectory data are. We implemented a h...
متن کاملA Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images
Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...
متن کاملUnsupervised Feature Learning for Speech and Music Detection in Radio Broadcasts
Detecting speech and music is an elementary step in extracting information from radio broadcasts. Existing solutions either rely on general-purpose audio features, or build on features specifically engineered for the task. Interpreting spectrograms as images, we can apply unsupervised feature learning methods from computer vision instead. In this work, we show that features learned by a mean-co...
متن کاملMirex 2012 Submission Audio Classification Using Sparse Feature Learning
We present a training/test framework for automatic audio annotation and ranking using learned feature representations. Commonly used audio features in audio classification, such as MFCC and chroma, have been developed based on acoustic knowledge. As an alternative, there is increasing interest in learning features from data using unsupervised learning algorithms. In this work, we apply sparse R...
متن کاملAdaptive Feature Ranking for Unsupervised Transfer Learning
Transfer Learning is concerned with the application of knowledge gained from solving a problem to a different but related problem domain. In this paper, we propose a method and efficient algorithm for ranking and selecting representations from a Restricted Boltzmann Machine trained on a source domain to be transferred onto a target domain. Experiments carried out using the MNIST, ICDAR and TiCC...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1612.01717 شماره
صفحات -
تاریخ انتشار 2016